Assamese Digit Recognition with Feed Forward Neural Network

نویسندگان

  • K. L. Du
  • M. N. S. Swamy
  • J. Park
  • V. Govindaraju
  • S. N. Srihari
  • H. K. Kwag
  • S. H. Kim
  • S. H. Jeong
  • G. S. Lee
چکیده

The aim of this paper is to design a recognizer to recognize Assamese digits using feed forward neural network. The recognizer crops the individual digits of the image using bounding box method and extracts the feature. In the present study zoning is used to obtain necessary feature vector. This feature is provided as input to the classifier and the network is trained with backpropagation training algorithm with two hidden layer. The recognition rate of printed digits is 98%, including multi size, bold and italics fonts. In case of handwritten digits recognition rate is 70. 6%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of sound classification by neural networks in the recognition of human hearing

In this paper, we focus on two basic issues: (a) the classification of sound by neural networks based on frequency and sound intensity parameters (b) evaluating the health of different human ears as compared to of those a healthy person. Sound classification by a specific feed forward neural network with two inputs as frequency and sound intensity and two hidden layers is proposed. This process...

متن کامل

Handwritten Character Recognition using Modified Gradient Descent Technique of Neural Networks and Representation of Conjugate Descent for Training Patterns

The purpose of this study is to analyze the performance of Back propagation algorithm with changing training patterns and the second momentum term in feed forward neural networks. This analysis is conducted on 250 different words of three small letters from the English alphabet. These words are presented to two vertical segmentation programs which are designed in MATLAB and based on portions (1...

متن کامل

Persian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network

Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...

متن کامل

High Performance Telephone Bandwidth Speaker Independent Continuous Digit Recognition

The development of a high-performance telephonebandwidth speaker independent connected digit recognizer for Italian is described. The CSLU Speech Toolkit was used to develop and implement the hybrid ANN/HMM system, which is trained on contextdependent categories to account for coarticulatory variation. Various front-end processing and system architecture were compared and, when the best feature...

متن کامل

Intelligent Handwritten Digit Recognition using Artificial Neural Network

The aim of this paper is to implement a Multilayer Perceptron (MLP) Neural Network to recognize and predict handwritten digits from 0 to 9. A dataset of 5000 samples were obtained from MNIST. The dataset was trained using gradient descent back-propagation algorithm and further tested using the feed-forward algorithm. The system performance is observed by varying the number of hidden units and t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015